Angewandte Chemie

Supporting Information
© Wiley-VCH 2015

69451 Weinheim, Germany

Structure of a Reactive Gold Carbenoid**

Günter Seidel and Alois Fürstner*
anie_201402080_sm_miscellaneous_information.pdf

CRYSTALLOGRAPHIC SUMMARY

Figure S1. Structure of the Fischer-type gold carbenoid $4(X=O M e)$ in the solid state.

Figure S2. Structure of complex 11 in the solid state.

X-ray Crystal Structure Analysis of Complex 4 (X=OMe): $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{Au}_{6} \mathrm{~N} \mathrm{O}_{6} \mathrm{PS}_{2}, M_{r}=907.70 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, red-brown block, crystal size $0.46 \times 0.32 \times 0.20 \mathrm{~mm}$, triclinic, space group P1, $a=9.6044(12) \AA$ A,$b=$ $11.1812(14) \AA, c=16.408(2) \AA, \alpha=101.004(2)^{\circ}, b=98.170(2)^{\circ}, \gamma=90.799(2)^{\circ}, V=1710.6(4) \AA^{3}, T=$ $100 \mathrm{~K}, Z=2, D_{\text {calc }}=1.762 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA, \mu\left(M o-K_{\alpha}\right)=4.543 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\text {min }}=0.13, T_{\max }=0.54$), Bruker-AXS Smart APEX-II diffractometer, $1.28<\theta<31.61^{\circ}, 52180$ measured reflections, 11459 independent reflections, 11214 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.017[I>2 \sigma(I)]$, $w R_{2}=0.043,417$ parameters, H atoms riding, $S=1.071$, residual electron density $1.7 /-1.2 \mathrm{e} \AA^{-3}$.

X-ray Crystal Structure Analysis of Complex 11: $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{AuF}_{6} \mathrm{NO}_{6} \mathrm{P} \mathrm{S}_{2}, M_{r}=983.79 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, red plate, crystal size $0.12 \times 0.11 \times 0.04 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / c, a=11.2857(6) \AA ̊, b=9.1933(5) \AA$, c $=36.798(2) \AA, B=94.369(2)^{\circ}, V=3806.8(4) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.717 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA$, $\mu\left(C u-K_{\alpha}\right)=9.339 \mathrm{~mm}^{-1}$, Empirical absorption correction ($\mathrm{T}_{\min }=0.37, \mathrm{~T}_{\max }=0.69$), Bruker-AXS Proteum X8 diffractometer, $2.41<\theta<59.28^{\circ}$, 80066 measured reflections, 5524 independent reflections, 4947 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix leastsquares against F^{2} to $R_{1}=0.032[I>2 \sigma(I)], w R_{2}=0.064,470$ parameters, H atoms riding, $S=1.099$, residual electron density $0.9 /-1.3$ e \AA^{-3}.

CCDC-984123 (4, X = OMe) and CCDC-984124 (11) contain the supplementary crystallographic data for this paper. This information can be obtained free of charge from The Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General: All reactions were carried out under Ar in flame-dried glassware. The solvents were purified by distillation over the indicated drying agents under Ar : $\mathrm{Et}_{2} \mathrm{O}\left(\mathrm{Mg}\right.$ /anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, pentanes (Na / K). NMR: Spectra were recorded on Bruker AV 400 or AV 500 spectrometers at the indicated temperatures; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}}=53.8 \mathrm{ppm}\right.$; residual CHDCl_{2} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}}=5.32 \mathrm{ppm}$). ESI-MS: ESQ 3000 (Bruker), HRMS: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan).

Preparation of Complexes 9 and 11. [(Cy $\left.\left.{ }_{3} \mathrm{P}\right) \mathrm{Au}\right] \mathrm{NTf}_{2}(42 \mathrm{mg}, 0.055 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$ to a solution of complex $\mathbf{7 b}(23 \mathrm{mg}, 0.055 \mathrm{mmol})^{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ and the resulting mixture was stirred at this temperature for 7 h . Inspection by ${ }^{31} \mathrm{P} N M R$ showed the presence of three species in solution $\left[{ }^{31} \mathrm{P}\right.$ NMR $\left.\left(-80^{\circ} \mathrm{C}\right): \delta=56.4(64 \%, 11), 70.7(33 \%, 8), 71.7(3 \%, 9)\right] .{ }^{2}$ The mixture was kept at $-50^{\circ} \mathrm{C}$ for 18 h , at which point only two phosphorous containing species were detected by ${ }^{31} \mathrm{P}$ NMR [${ }^{31} \mathrm{P}$ NMR $\left(-50^{\circ} \mathrm{C}\right): \delta=56.4(65 \%, 11)$, $\left.71.8(35 \%, 9)\right]$. The solvent was carefully distilled off in high vacuum ($10^{-4} \mathrm{mbar}$) at $-20^{\circ} \mathrm{C}$. The residue was dissolved in cold $\left(-20^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the resulting solution was slowly cooled to $-80^{\circ} \mathrm{C}$ with the help of a cryostat to give a mixture of dark-red and bright-red microcrystalline materials. The supernatant was syphoned off via cannula and the solid material dissolved in cold $\left(-20^{\circ} \mathrm{C}\right) \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The solution was carefully layered with cold $\left(-20^{\circ} \mathrm{C}\right)$ $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the mixture cooled again to $-80^{\circ} \mathrm{C}$. The mother liquor was removed via cannula and the bright red crystalline residue dissolved in cold $\left(-20^{\circ} \mathrm{C}\right) \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The solution was carefully layered with cold $\left(-20^{\circ} \mathrm{C}\right)$ pentane $(1 \mathrm{~mL})$ and the mixture slowly cooled to $-80^{\circ} \mathrm{C}$ to give bright red

[^0]crystals of complex 11 that were suitable for X-ray diffraction. In crystalline form and when kept in the dark, the compound is stable for a couple of days even at ambient temperature. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right): \delta=7.84(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.05(\mathrm{~s}, 6 \mathrm{H}), 2.24-2.10(\mathrm{~m}$, $3 H), 2.08-1.69(m, 15 H), 1.59-1.42(m, 6 H), 1.42-1.16 \mathrm{ppm}(\mathrm{m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $\left.-20^{\circ} \mathrm{C}\right): \delta=284.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=95 \mathrm{~Hz}\right), 170.0,143.5,142.4,116.1,57.1,32.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=26.9 \mathrm{~Hz}\right), 30.9,27.0(\mathrm{~d}$, $J_{\mathrm{PC}}=11.7 \mathrm{~Hz}$), $25.9 \mathrm{ppm} ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right): \delta=56.5 \mathrm{ppm} ; \mathrm{HRMS}(E S I): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{AuO}_{2} \mathrm{P}\left(\mathrm{M}^{+}-\mathrm{NTf}_{2}\right) 703.2974$, found 703.2980.

When excess (ca. 10 equiv.) of p-methoxystyrene was added to a pink colored solution of complex 11 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to warm slowly (cryostat), the color started to fade away when $-20^{\circ} \mathrm{C}$ was reached. The solution was warmed to ambient temperature and the reaction monitored by GC/MS, which showed 1,1,2-tris(p-methoxyphenyl)cyclopropane (19) as the only low molecular weight product that was identified by its characteristic mass spectral data. MS (EI): $m / z=$ 360 ($\mathrm{M}^{+}, 73$), 329 (65), 252 (100), 239 (56), 237 (49), 221 (38), 195 (11), 165 (27), 152 (20), 139 (16), 121 (38), 91 (15), 65 (9).

The combined mother liquors of the recrystallizations were evaporated at $-20^{\circ} \mathrm{C}$ in high vacuum (10^{-4} mbar) to give a dark red residue, which was dissolved in cold $\left(-20^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. The resulting solution was slowly cooled to $-80^{\circ} \mathrm{C}$ to give complex 9 as a microcrystalline powder. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right): \delta=8.07(\mathrm{br}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{br}, 1 \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=8.9$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{br}, 1 \mathrm{H}), 6.73(\mathrm{br}, 1 \mathrm{H})$, $4.00(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.14-1.9(\mathrm{~m}), 1.9-1.6(\mathrm{~m}), 1.5-1.2 \mathrm{ppm}(\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $-20^{\circ} \mathrm{C}$, characteristic signals): $\delta=242.7\left(\mathrm{~d}, J_{\mathrm{PC}}=48.3 \mathrm{~Hz}\right), 231.7,227.2,226.6,223.9\left[\mathrm{Cr}(\mathrm{CO})_{4}\right], 84.5$ $\left(\mathrm{Cr}-\mathrm{C}_{\mathrm{ipso}}\right), 56.7,56.3(\mathrm{OMe}), 32.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=27.1 \mathrm{~Hz}\right), 30.4,26.5\left(\mathrm{~d}, J_{\mathrm{PC}}=12.1 \mathrm{~Hz}\right), 25.3 \mathrm{ppm} ;{ }^{31} \mathrm{P} \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right.$): $\delta=71.9 \mathrm{ppm}$.

Complex 4. [(Cy $\left.\left.{ }_{3} \mathrm{P}\right) \mathrm{Au}\right] \mathrm{NTf}_{2}(235 \mathrm{mg}, 0.31 \mathrm{mmol})$ was added at $-50^{\circ} \mathrm{C}$ to a solution of complex 3 (108 $\mathrm{mg}, 0.31 \mathrm{mmol})^{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After stirring for 5 h at $-50^{\circ} \mathrm{C}$, the resulting red-brown suspension was cooled to $-78^{\circ} \mathrm{C}$ and the precipitated $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$ was filtered off at this temperature. The filtrate was evaporated in high vacuum ($10^{-3} \mathrm{mbar}$), while keeping the temperature $\leq-30^{\circ} \mathrm{C}$. The viscous residue was dissolved in cold $\left(-30^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, from which the product started to precipitate.

[^1]The suspension was slowly cooled to $-80^{\circ} \mathrm{C}$ before the mother liquor was removed via cannula. The solid material was triturated with cold $\left(-78^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}$ and dried in vacuum ($10^{-3} \mathrm{mbar}$) to give complex 4 in the form of lilac crystals that were suitable for X-ray diffraction ($220 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}\right): \delta=8.53(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.08(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 3.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OMe}), 2.3-2.1(\mathrm{~m}, 3 \mathrm{H}), 2.1-1.6(\mathrm{~m}, 15 \mathrm{H}), 1.6-$ $1.0(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}$): $\delta=279.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=101.8 \mathrm{~Hz}\right.$), 169.4, 147.0, 134.4, (d, $\left.J_{\mathrm{PC}}=6.4 \mathrm{~Hz}\right), 130.6,116.8,114.1,69.4,56.7,32.1\left(\mathrm{~d}, J_{\mathrm{PC}}=27.5 \mathrm{~Hz}\right), 30.5,26.7\left(\mathrm{~d}, J_{\mathrm{PC}}=12 \mathrm{~Hz}\right), 22.5$; the CF_{3} group was not detected; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{AuO}_{2} \mathrm{P}\left(\mathrm{M}^{+}-\mathrm{NTf}_{2}\right): 627.2661$, found 627.2663.

${ }^{31}$ P NMR @ $-50^{\circ} \mathrm{C}$

(

[^0]: 1 J. Pfeiffer, K. H. Dötz, Organometallics 1998, 17, 4353-4361.
 2 The assignment is based on the data of isolated 9 and 11 and is in excellent agreement with the data of the analogous complexes devoid of the MeO-groups which are reported in: G. Seidel, B. Gabor, R. Goddard, B. Heggen, W. Thiel, A. Fürstner, Angew. Chem. 2014, 126, 898-901; Angew. Chem. Int. Ed. 2014, 53, 879-882.

[^1]: 3 E. O. Fischer, C. G. Kreiter, H. J. Kollmeier, J. Müller, R. D. Fischer, J. Organomet. Chem. 1971, 28, 237-258.

