

Supporting Information

© Wiley-VCH 2015

69451 Weinheim, Germany

Structure of a Reactive Gold Carbenoid**

Günter Seidel and Alois Fürstner*

anie_201402080_sm_miscellaneous_information.pdf

CRYSTALLOGRAPHIC SUMMARY

Figure S1. Structure of the Fischer-type gold carbenoid **4** (X = OMe) in the solid state.

Figure S2. Structure of complex 11 in the solid state.

X-ray Crystal Structure Analysis of Complex 4 (X = OMe): $C_{29} H_{43} Au F_6 N O_6 P S_2$, $M_r = 907.70 \text{ g} \cdot \text{mol}^{-1}$, red-brown block, crystal size 0.46 x 0.32 x 0.20 mm, triclinic, space group *P1*, a = 9.6044(12) Å, b = 11.1812(14) Å, c = 16.408(2) Å, $\alpha = 101.004(2)^\circ$, $\beta = 98.170(2)^\circ$, $\gamma = 90.799(2)^\circ$, V = 1710.6(4) Å³, T = 100 K, Z = 2, $D_{calc} = 1.762 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 4.543 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.13$, $T_{max} = 0.54$), Bruker-AXS Smart APEX-II diffractometer, $1.28 < \theta < 31.61^\circ$, 52180 measured reflections, 11459 independent reflections, 11214 reflections with $I > 2\sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.017 [I > 2\sigma(I)]$, $wR_2 = 0.043$, 417 parameters, H atoms riding, S = 1.071, residual electron density $1.7 / -1.2 \text{ e} \text{ Å}^{-3}$.

X-ray Crystal Structure Analysis of Complex 11: $C_{35} H_{47} Au F_6 N O_6 P S_2$, $M_r = 983.79 \text{ g} \cdot \text{mol}^{-1}$, red plate, crystal size 0.12 x 0.11 x 0.04 mm, monoclinic, space group $P2_1/c$, a = 11.2857(6) Å, b = 9.1933(5) Å, c = 36.798(2) Å, $b = 94.369(2)^\circ$, V = 3806.8(4) Å³, T = 100 K, Z = 4, $D_{calc} = 1.717 \text{ g} \cdot \text{cm}^3$, $\lambda = 1.54178$ Å, $\mu(Cu-K_{\alpha}) = 9.339 \text{ mm}^{-1}$, Empirical absorption correction ($T_{min} = 0.37$, $T_{max} = 0.69$), Bruker-AXS Proteum X8 diffractometer, 2.41 < θ < 59.28°, 80066 measured reflections, 5524 independent reflections, 4947 reflections with $I > 2\sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^2 to $R_1 = 0.032 [I > 2\sigma(I)]$, $wR_2 = 0.064$, 470 parameters, H atoms riding, S = 1.099, residual electron density 0.9 / -1.3 e Å⁻³.

CCDC-984123 (**4**, X = OMe) and **CCDC-984124** (**11**) contain the supplementary crystallographic data for this paper. This information can be obtained free of charge from The Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General: All reactions were carried out under Ar in flame-dried glassware. The solvents were purified by distillation over the indicated drying agents under Ar: Et₂O (Mg/anthracene), CH₂Cl₂ (CaH₂), pentanes (Na/K). NMR: Spectra were recorded on Bruker AV 400 or AV 500 spectrometers at the indicated temperatures; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (*J*) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CD₂Cl₂: δ_{c} = 53.8 ppm; residual CHDCl₂ in CD₂Cl₂: δ_{H} = 5.32 ppm). ESI-MS: ESQ 3000 (Bruker), HRMS: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan).

Preparation of Complexes 9 and 11. $[(Cy_3P)Au]NTf_2$ (42 mg, 0.055 mmol) was added at $-78^{\circ}C$ to a solution of complex **7b** (23 mg, 0.055 mmol)¹ in CD₂Cl₂ (0.8 mL) and the resulting mixture was stirred at this temperature for 7 h. Inspection by ³¹P NMR showed the presence of three species in solution [³¹P NMR (-80° C): $\delta = 56.4$ (64 %, **11**), 70.7 (33 %, **8**), 71.7 (3 %, **9**)].² The mixture was kept at $-50^{\circ}C$ for 18 h, at which point only two phosphorous containing species were detected by ³¹P NMR [³¹P NMR (-50° C): $\delta = 56.4$ (65 %, **11**), 71.8 (35 %, **9**)]. The solvent was carefully distilled off in high vacuum (10^{-4} mbar) at $-20^{\circ}C$. The residue was dissolved in cold ($-20^{\circ}C$) Et₂O (2 mL) and the resulting solution was slowly cooled to $-80^{\circ}C$ with the help of a cryostat to give a mixture of dark-red and bright-red microcrystalline materials. The supernatant was syphoned off via cannula and the solid material dissolved in cold ($-20^{\circ}C$) CH₂Cl₂ (1 mL). The solution was removed via cannula and the solid material dissolved in cold ($-20^{\circ}C$) CH₂Cl₂ (1 mL). The solution was carefully layered with cold ($-20^{\circ}C$) et₂O (2 mL) and the mixture cooled again to $-80^{\circ}C$. The mother liquor was removed via cannula and the bright red crystalline residue dissolved in cold ($-20^{\circ}C$) CH₂Cl₂ (1 mL). The solution was carefully layered with cold ($-20^{\circ}C$) etight red with cold ($-20^{\circ}C$) pentane (1 mL) and the mixture slowly cooled to $-80^{\circ}C$ to give bright red

¹ J. Pfeiffer, K. H. Dötz, *Organometallics* **1998**, *17*, 4353-4361.

² The assignment is based on the data of isolated **9** and **11** and is in excellent agreement with the data of the analogous complexes devoid of the MeO-groups which are reported in: G. Seidel, B. Gabor, R. Goddard, B. Heggen, W. Thiel, A. Fürstner, *Angew. Chem.* **2014**, *126*, 898-901; *Angew. Chem. Int. Ed.* **2014**, *53*, 879-882.

crystals of complex **11** that were suitable for X-ray diffraction. In crystalline form and when kept in the dark, the compound is stable for a couple of days even at ambient temperature. ¹H NMR (400 MHz, CD₂Cl₂, -20° C): δ = 7.84 (d, *J* = 8.9 Hz, 4 H), 7.23 (d, *J* = 8.9 Hz, 4 H), 4.05 (s, 6 H), 2.24 – 2.10 (m, 3 H), 2.08 – 1.69 (m, 15 H), 1.59 – 1.42 (m, 6 H), 1.42 – 1.16 ppm (m, 9 H); ¹³C NMR (100 MHz, CD₂Cl₂, -20° C): δ = 284.5 (d, *J*_{PC} = 95 Hz), 170.0, 143.5, 142.4, 116.1, 57.1, 32.7 (d, *J*_{PC} = 26.9 Hz), 30.9, 27.0 (d, *J*_{PC} = 11.7 Hz), 25.9 ppm; ³¹P NMR (162 MHz, CD₂Cl₂, -20° C): δ = 56.5 ppm; HRMS (ESI): *m/z* calcd for C₃₃H₄₇AuO₂P (M⁺ - NTf₂) 703.2974, found 703.2980.

When excess (ca. 10 equiv.) of *p*-methoxystyrene was added to a pink colored solution of complex **11** in CD_2Cl_2 at $-78^{\circ}C$ and the mixture was allowed to warm slowly (cryostat), the color started to fade away when $-20^{\circ}C$ was reached. The solution was warmed to ambient temperature and the reaction monitored by GC/MS, which showed 1,1,2-tris(*p*-methoxyphenyl)cyclopropane (**19**) as the only low molecular weight product that was identified by its characteristic mass spectral data. MS (EI): $m/z = 360 (M^+, 73), 329 (65), 252 (100), 239 (56), 237 (49), 221 (38), 195 (11), 165 (27), 152 (20), 139 (16), 121 (38), 91 (15), 65 (9).$

The combined mother liquors of the recrystallizations were evaporated at -20° C in high vacuum (10^{-4} mbar) to give a dark red residue, which was dissolved in cold (-20° C) Et₂O (2 mL). The resulting solution was slowly cooled to -80° C to give complex **9** as a microcrystalline powder. ¹H NMR (400 MHz, CD₂Cl₂, -20° C): $\delta = 8.07$ (br, 1 H), 7.45 (dd, J = 8.2, 2.5 Hz, 1 H), 7.34 (br, 1 H), 7.16 (dd, J = 8.9, 2.4 Hz, 1 H), 7.09 (dd, J = 8.2, 2.5 Hz, 1 H), 6.98 (dd, J = 8.9, 2.5 Hz, 1 H), 6.95 (br, 1 H), 6.73 (br, 1 H), 4.00 (s, 3 H), 3.96 (s, 3 H), 2.14 – 1.9 (m), 1.9 – 1.6 (m), 1.5 – 1.2 ppm (m); ¹³C NMR (100 MHz, CD₂Cl₂, -20° C, characteristic signals): $\delta = 242.7$ (d, $J_{PC} = 48.3$ Hz), 231.7, 227.2, 226.6, 223.9 [Cr(CO)₄], 84.5 (Cr-C_{ipso}), 56.7, 56.3 (OMe), 32.2 (d, $J_{PC} = 27.1$ Hz), 30.4, 26.5 (d, $J_{PC} = 12.1$ Hz), 25.3 ppm; ³¹P NMR (162 MHz, CD₂Cl₂, -20° C): $\delta = 71.9$ ppm.

Complex 4. $[(Cy_3P)Au]NTf_2$ (235 mg, 0.31 mmol) was added at $-50^{\circ}C$ to a solution of complex **3** (108 mg, 0.31 mmol)³ in CH₂Cl₂ (2 mL). After stirring for 5 h at $-50^{\circ}C$, the resulting red-brown suspension was cooled to $-78^{\circ}C$ and the precipitated $[Cr(CO)_6]$ was filtered off at this temperature. The filtrate was evaporated in high vacuum (10^{-3} mbar), while keeping the temperature $\leq -30^{\circ}$ C. The viscous residue was dissolved in cold ($-30^{\circ}C$) Et₂O (10 mL), from which the product started to precipitate.

³ E. O. Fischer, C. G. Kreiter, H. J. Kollmeier, J. Müller, R. D. Fischer, *J. Organomet. Chem.* **1971**, *28*, 237-258.

The suspension was slowly cooled to -80° C before the mother liquor was removed via cannula. The solid material was triturated with cold (-78° C) Et₂O and dried in vacuum (10^{-3} mbar) to give complex **4** in the form of lilac crystals that were suitable for X-ray diffraction (220 mg, 78 %). ¹H NMR (400 MHz, CD₂Cl₂, -50° C): $\delta = 8.53$ (d, J = 7 Hz, 1 H), 8.02 (d, J = 5.9 Hz, 1 H), 7.16 (d, J = 7 Hz, 1 H); 7.08 (d, J = 5.9 Hz, 1 H), 4.86 (s, 3 H, -OMe), 3.98 (s, 3 H, Ar-OMe), 2.3 – 2.1 (m, 3 H), 2.1 – 1.6 (m, 15 H), 1.6 – 1.0 (m, 15 H); ¹³C NMR (100 MHz, CD₂Cl₂, -50° C): $\delta = 279.7$ (d, $J_{PC} = 101.8$ Hz), 169.4, 147.0, 134.4, (d, $J_{PC} = 6.4$ Hz), 130.6, 116.8, 114.1, 69.4, 56.7, 32.1 (d, $J_{PC} = 27.5$ Hz), 30.5, 26.7 (d, $J_{PC} = 12$ Hz), 22.5; the CF₃ group was not detected; HRMS (ESI): m/z calcd for C₂₇H₄₃AuO₂P (M⁺ - NTf₂): 627.2661, found 627.2663.

